Affiliation:
1. Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
2. Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
3. Institute of Water Resources for Pastoral Area, Ministry of Water Resources, Hohhot 010020, China
Abstract
In the context of global warming, timely and accurate drought monitoring is of great importance to ensure regional ecological security and guide agricultural production. This study established the Drought Severity Index (DSI), based on the potential evapotranspiration (PET), evapotranspiration (ET) and normalized difference vegetation index (NDVI) data from 2001 to 2020, to compensate for the low accuracy of drought spatial and temporal evolution due to the uneven distribution of stations. The DSI index was established to reveal the spatial and temporal variation of droughts in Inner Mongolia in the past 20 years, using trend analysis, gravity shift and geographic probes, and to explore the influence of different factors on the DSI. The results were as follows. (1) The results showed that the spatial distribution of DSI in Inner Mongolia during 2001–2020 had strong spatial heterogeneity, and generally showed distribution characteristics of drought in the west and wet in the east. In addition, the changes in DSI all exhibited a rising tendency, with the highest tendency in deciduous broadleaf forests (DBF) and the lowest tendency in grassland (GRA). (2) The center of gravity of wet, normal and arid areas showed a migration trend from northeast to southwest, with migration distances of 209 km, 462 km and 826 km, respectively. (3) The four combinations of temperature and elevation, temperature and slope, temperature and land use, and temperature and rainfall contributed the most. The results obtained in this study are important for the scheduling of ecological early warnings and drought prevention and control.