Variations in Microbial Residue and Its Contribution to SOC between Organic and Mineral Soil Layers along an Altitude Gradient in the Wuyi Mountains

Author:

Sun Yiming1,Chen Xunlong1,Zhong Anna1,Guo Shijie1,Zhang Houxi1234ORCID

Affiliation:

1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation of Red Soil Region in Southern China, Fuzhou 350002, China

3. Cross-Strait Collaborative Innovation Center of Soil and Water Conservation, Fuzhou 350002, China

4. National Positioning Observation and Research Station of Red Soil Hill Ecosystem in Changting, Fuzhou 350002, China

Abstract

Microbes are crucial components of soil, and their residue carbon plays a significant role in the formation and stabilization of soil carbon pools. However, current research on microbial residue carbon has predominantly focused on surface soils, with limited studies on deep soils. The patterns of variation along soil profiles and their controlling factors remain unclear. Therefore, this study aimed to investigate the soils from different elevations in the Wuyi Mountains, specifically focusing on the organic layers (0–10 cm) and mineral layers (30–40 cm). Amino sugars were utilized as biomarkers for the microbial residue, and the RDA (redundancy analysis) method was employed to analyze the patterns of microbial residue carbon in different soil layers and to identify the factors that control them. The results indicate that there are significant differences in the microbial residue carbon content and its contribution to soil organic carbon (SOC) between the different soil layers. Specifically, between the organic layer and the mineral layer, the microbial residue carbon content exhibited an increasing trend, whereas its contribution to SOC decreased. This finding suggests that soil layer type has a notable impact on microbial residue carbon content and its contribution to SOC. Moreover, fungal residue carbon content was found to be higher than bacterial residue carbon content in both soil layers. However, the ratio of fungal residue carbon to bacterial residue carbon gradually decreased between the organic layer and the mineral layer. This implies that although fungal residue carbon remains dominant, the contribution of bacterial residue carbon to the soil carbon pool increases as the soil transitions to the mineral layer. The total soil carbon content, elevation, and C/N ratio exhibited positive correlations with fungal and bacterial residue carbon, indicating their significant roles in the accumulation of microbial residue carbon in soils. Notably, elevation emerged as a key regulating factor in the accumulation of microbial residue carbon, explaining 85.8% and 67.9% of the variations observed in the organic layer and the mineral layer respectively. These research findings contribute to a better understanding of the soil carbon cycling process and its mechanisms, providing a scientific basis for developing strategies to enhance soil carbon sequestration by manipulating micro-organisms.

Funder

Tibet Autonomous Region Science and Technology Plan Project Key Project

Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Special Fund for Science and Technology Innovation of Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3