Affiliation:
1. College of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410018, China
Abstract
Pine wilt disease (PWD) is one of the most concerning diseases in forestry and poses a considerable threat to forests. Since the deep learning approach can interpret the raw images acquired by UAVs, it provides an effective means for forest health detection. However, the fact that only PWD can be detected but not the degree of infection can be evaluated hinders forest management, so it is necessary to establish an effective method to accurately detect PWD and extract regions infected by PWD. Therefore, a Mask R-CNN-based PWD detection and extraction algorithm is proposed in this paper. Firstly, the extraction of image features is improved by using the advanced ConvNeXt network. Then, it is proposed to change the original multi-scale structure to PA-FPN and normalize it by using GN and WS methods, which effectively enhances the data exchange between the bottom and top layers under low Batch-size training. Finally, a branch is added to the Mask module to improve the ability to extract objects using fusion. In addition, a PWD region extraction module is proposed in this paper for evaluating the damage caused by PWD. The experimental results show that the improved method proposed in this paper can achieve 91.9% recognition precision, 90.2% mapping precision, and 89.3% recognition rate of the affected regions on the PWD dataset. It can effectively identify the distribution of diseased pine trees and calculate the damage proportion in a relatively accurate way to facilitate the management of forests.
Funder
National Key Research & Development Program of China
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献