Technical and Economic Evaluation of CO2 Capture and Reinjection Process in the CO2 EOR and Storage Project of Xinjiang Oilfield

Author:

Zhang LiangORCID,Geng Songhe,Yang Linchao,Hao Yongmao,Yang HongbinORCID,Dong Zhengmiao,Shi Xian

Abstract

CO2 capture and reinjection process (CCRP) can reduce the used CO2 amount and improve the CO2 storage efficiency in CO2 EOR projects. To select the best CCRP is an important aspect. Based on the involved equipment units of the CCRP, a novel techno-economic model of CCRP for produced gas in CO2 EOR and storage project was established. Five kinds of CO2 capture processes are covered, including the chemical absorption using amine solution (MDEA), pressure swing adsorption (PSA), low-temperature fractionation (LTF), membrane separation (MS), and direct reinjection mixed with purchased CO2 (DRM). The evaluation indicators of CCRP such as the cost, energy consumption, and CO2 capture efficiency and purity can be calculated. Taking the pilot project of CO2 EOR and storage in XinJiang oilfield China as an example, a sensitivity evaluation of CCRP was conducted based on the assumed gas production scale and the predicted yearly gas production. Finally, the DRM process was selected as the main CCRP associated with the PSA process as an assistant option. The established model of CCRP can be a useful tool to optimize the CO2 recycling process and assess the CO2 emission reduction performance of the CCUS project.

Funder

National Science and Technology Major Project

General Project of Shandong Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference50 articles.

1. Leakage Pathways and Risk Analysis of Carbon Dioxide in Geological Storage;Ren;Acta Pet. Sin.,2014

2. Application and enlightenment of carbon dioxide flooding in the United States of America

3. Experimental study of hydrodynamic characteristics and CO2 absorption in producer gas using CaO-sand mixture in a bubbling fluidized bed reactor;Zainal;Int. J. Chem. React. Eng.,2011

4. Process modeling and optimization studies of high pressure membrane separation of CO2 from natural gas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3