Abstract
CO2 capture and reinjection process (CCRP) can reduce the used CO2 amount and improve the CO2 storage efficiency in CO2 EOR projects. To select the best CCRP is an important aspect. Based on the involved equipment units of the CCRP, a novel techno-economic model of CCRP for produced gas in CO2 EOR and storage project was established. Five kinds of CO2 capture processes are covered, including the chemical absorption using amine solution (MDEA), pressure swing adsorption (PSA), low-temperature fractionation (LTF), membrane separation (MS), and direct reinjection mixed with purchased CO2 (DRM). The evaluation indicators of CCRP such as the cost, energy consumption, and CO2 capture efficiency and purity can be calculated. Taking the pilot project of CO2 EOR and storage in XinJiang oilfield China as an example, a sensitivity evaluation of CCRP was conducted based on the assumed gas production scale and the predicted yearly gas production. Finally, the DRM process was selected as the main CCRP associated with the PSA process as an assistant option. The established model of CCRP can be a useful tool to optimize the CO2 recycling process and assess the CO2 emission reduction performance of the CCUS project.
Funder
National Science and Technology Major Project
General Project of Shandong Natural Science Foundation
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference50 articles.
1. Leakage Pathways and Risk Analysis of Carbon Dioxide in Geological Storage;Ren;Acta Pet. Sin.,2014
2. Application and enlightenment of carbon dioxide flooding in the United States of America
3. Experimental study of hydrodynamic characteristics and CO2 absorption in producer gas using CaO-sand mixture in a bubbling fluidized bed reactor;Zainal;Int. J. Chem. React. Eng.,2011
4. Process modeling and optimization studies of high pressure membrane separation of CO2 from natural gas
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献