Author:
Salhein Khaled,Ashraf Javed,Zohdy Mohamed
Abstract
This paper presents the Improved Grey Prediction Model, also called IGM (1,1) model, to increase the prediction accuracy of the Grey Prediction Model (GM) model that performs the GHPS output temperature prediction. This was based on correcting the current predicted value by subtracting the error between the previous predicted value and the previous immediate mean of the measured value. Subsequently, the IGM (1,1) model was applied to predict the output temperature of the GHPSs at Oklahoma University, the University Politècnica de València, and Oakland University, respectively. For each GHPS, the model uses a small dataset of 24 data points (i.e., 24 h) for training to predict the output temperature eight hours in advance. The proposed model was verified using three different output temperature datasets; these datasets were also used to validate the power efficiency of the proposed model. In addition, the empirical results show that the proposed IGM (1,1) model significantly improves the simulation (in-sample) and the prediction (out-of-sample) of the output temperature of the GHPS through error reduction, thereby enhancing the GM (1,1) model’s overall accuracy. As a result, the prediction accuracies were compared, and the improved model was found to be more accurate than the GM (1,1) model in both simulation and prediction results for all datasets used.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference33 articles.
1. Development of a design and performance prediction tool for the ground source heat pump system
2. A methodology to evaluate pumping energy consumption in GSHP systems;Sfeir;ASHRAE Trans.,2005
3. Ground-source heat pumps systems and applications
4. Heat Exchangers: Selection, Rating, and Thermal Design;Kakac,2020
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献