Abstract
The article proposes a method of multipurpose optimization of the size of an autonomous hybrid energy system consisting of photovoltaic, wind, diesel, and battery energy storage systems, and including a load-shifting system. The classical iterative Gauss–Seidel method was applied to optimize the size of a hybrid energy system in a remote settlement on Sakhalin Island. As a result of the optimization according to the minimum net present value criterion, several optimal configurations corresponding to different component combinations were obtained. Several optimal configurations were also found, subject to a payback period constraint of 5, 6, and 7 years. Optimizing the size of the hybrid power system with electric load shifting showed that the share of the load not covered by renewable energy sources decreases by 1.25% and 2.1%, depending on the parameters of the load shifting model. Net present cost and payback period also decreased, other technical and economic indicators improved; however, CO2 emissions increased due to the reduction in the energy storage system.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献