Numerical Investigation of the Turbulent Flame Propagation in Dual Fuel Engines by Means of Large Eddy Simulation

Author:

Frühhaber Jens,Lauer ThomasORCID

Abstract

Dual fuel combustion depicts a possible alternative to reduce emissions from large engines and is characterized by injecting a small amount of diesel fuel into a lean natural gas–air mixture. Thereby, the presence of autoignition, diffusive and premixed combustion determine the high complexity of this process. In this work, an Extended Coherent Flame Model was adapted to consider the effect of natural gas on the ignition delay time. This model was afterward utilized to simulate 25 consecutive engine cycles employing LES. In this framework, the ensemble-average flow field was compared to a RANS solution to assess the advantages of LES in terms of the prediction of the in-cylinder flow field. A detailed investigation of the heat release characteristic showed that natural gas already highly contributes to the heat release at the beginning of combustion. Furthermore, a methodology to investigate the turbulent combustion regimes was utilized. It could be ascertained that the combustion mainly occurs in the regime of thin reaction zones. Possible triggers of cycle-to-cycle variations were determined in the velocity fluctuations in the cylinder axis direction and the flame formation in the gaps between the spray plume. The findings support the understanding of dual fuel combustion and serve as a basis for developing future combustion models.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. Resolution MEPC.176(58)—Revised MARPOL Annex VI,2008

2. Agenda 2030 – Mega-Trends im Bereich der maritimen Großmotoren

3. Natural Gas and Renewable Methane for Powertrains: Future Strategies for a Climate-Neutral Mobility;van Basshuysen,2016

4. Dual-Fuel Diesel Engines;Karim,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3