On Continuous-Time Gaussian Channels

Author:

Liu Xianming,Han GuangyueORCID

Abstract

A continuous-time white Gaussian channel can be formulated using a white Gaussian noise, and a conventional way for examining such a channel is the sampling approach based on the Shannon–Nyquist sampling theorem, where the original continuous-time channel is converted to an equivalent discrete-time channel, to which a great variety of established tools and methodology can be applied. However, one of the key issues of this scheme is that continuous-time feedback and memory cannot be incorporated into the channel model. It turns out that this issue can be circumvented by considering the Brownian motion formulation of a continuous-time white Gaussian channel. Nevertheless, as opposed to the white Gaussian noise formulation, a link that establishes the information-theoretic connection between a continuous-time channel under the Brownian motion formulation and its discrete-time counterparts has long been missing. This paper is to fill this gap by establishing causality-preserving connections between continuous-time Gaussian feedback/memory channels and their associated discrete-time versions in the forms of sampling and approximation theorems, which we believe will play important roles in the long run for further developing continuous-time information theory. As an immediate application of the approximation theorem, we propose the so-called approximation approach to examine continuous-time white Gaussian channels in the point-to-point or multi-user setting. It turns out that the approximation approach, complemented by relevant tools from stochastic calculus, can enhance our understanding of continuous-time Gaussian channels in terms of giving alternative and strengthened interpretation to some long-held folklore, recovering “long-known” results from new perspectives, and rigorously establishing new results predicted by the intuition that the approximation approach carries. More specifically, using the approximation approach complemented by relevant tools from stochastic calculus, we first derive the capacity regions of continuous-time white Gaussian multiple access channels and broadcast channels, and we then analyze how feedback affects their capacity regions: feedback will increase the capacity regions of some continuous-time white Gaussian broadcast channels and interference channels, while it will not increase capacity regions of continuous-time white Gaussian multiple access channels.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference78 articles.

1. A Mathematical Theory of Communication

2. Elements of Information Theory;Cover,2006

3. Certain Factors Affecting Telegraph Speed1

4. Communication in the Presence of Noise

5. Information Theory and Reliable Communication;Gallager,1968

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feedback Capacity of the Continuous-Time ARMA(1,1) Gaussian Channel;IEEE Transactions on Information Theory;2024-09

2. Feedback Capacity of OU-Colored AWGN Channels;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

3. On Sampling Continuous-Time AWGN Channels;IEEE Transactions on Information Theory;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3