Author:
Gao Yangfang,Wang Mingming,Wei Jun,Kong Lingwei,Xu Hui,Shi Wenqing,Zhu Lin
Abstract
Denitrification of sediments is an important way to remove reactive nitrogen in lakeshore zones. In this work, we analyzed sediment denitrification patterns across the shore zone of Lake Taihu and explored their underlying mechanisms using flooding simulation experiments. The results showed that denitrification mainly occurred in the upper sediment layer (0–10 cm) and the denitrification rate was highest at the land–water interface (6.2 mg N/m2h), where there was a frequent rise and fall in the water level. Denitrification was weaker in the lakebed sediments (4.6 mg N/m2h), which were inundated long-term, and in the sediments of the near-shore zone (2.3 mg N/m2h), which were dried out for extended periods. Flooding simulation experiments further indicated a strong positive relationship between sediment denitrification rate and flooding frequency. When the flooding occurred once every 3, 6, 9, 12, or 15 days, the denitrification rate reached 7.6, 5.7, 2.8, 0.9, and 0.6 mg N/m2h, respectively. Frequent flooding caused alternating anoxic and aerobic conditions in sediments, accelerating nitrogen substrate supply and promoting the growth and activity of denitrifying bacteria. Based on these findings, we propose a possible strategy for enhancing sediment denitrification by manipulating the water level, which can help guide nitrogen removal in lakeshore zones.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献