Abstract
Since the mid-2000s, several studies were carried out regarding the development of ballistic resistant materials based on polymeric matrix composites reinforced with natural lignocellulosic fibers (NLFs). The results reported so far are promising and are often comparable to commonly used materials such as KevlarTM, especially when used as an intermediate layer in a multilayer armor system (MAS). However, the most suitable configuration for these polymer composites reinforced with NLFs when subjected to high strain rates still lacks investigation. This work aimed to evaluate four possible arrangements for epoxy matrix composite reinforced with a stiff Brazilian NLF, piassava fiber, regarding energy absorption, and ballistic efficiency. Performance was evaluated against the ballistic impact of high-energy 7.62 mm ammunition. Obtained results were statistically validated by means of analysis of variance (ANOVA) and Tukey’s honest test. Furthermore, the micromechanics associated with the failure of these composites were determined. Energy absorption of the same magnitude as KevlarTM and indentation depth below the limit predicted by NIJ standard were obtained for all conditions.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献