Prefab Hollow Glass Microsphere-Based Immunosensor with Liquid Crystal Sensitization for Acute Myocardial Infarction Biomarker Detection

Author:

Niu PanpanORCID,Jiang JunfengORCID,Liu KunORCID,Wang Shuang,Xu Tianhua,Wang Ziyihui,Wang Tong,Zhang Xuezhi,Ding ZhenyangORCID,Liu Yize,Liu Tiegen

Abstract

Quantitative detection of cardiac troponin biomarkers in blood is an important method for clinical diagnosis of acute myocardial infarction (AMI). In this work, a whispering gallery mode (WGM) microcavity immunosensor based on a prefab hollow glass microsphere (HGMS) with liquid crystal (LC) sensitization was proposed and experimentally demonstrated for label-free cardiac troponin I-C (cTnI-C) complex detection. The proposed fiber-optic immunosensor has a simple structure; the tiny modified HGMS serves as the key sensing element and the microsample reservoir simultaneously. A sensitive LC layer with cTnI-C recognition ability was deposited on the inner wall of the HGMS microcavity. The arrangement of LC molecules is affected by the cTnI-C antigen—antibody binding in the HGMS, and the small change of the surface refractive index caused by the binding can be amplified owing to the birefringence property of LC. Using the annular waveguide of the HGMS, the WGMs were easily excited by the coupling scanning laser with a microfiber, and an all-fiber cTnI-C immunosensor can be achieved by measuring the resonant wavelength shift of the WGM spectrum. Moreover, the dynamic processes of the cTnI-C antigen—antibody binding and unbinding was revealed by monitoring the wavelength shift continuously. The proposed immunosensor with a spherical microcavity can be a cost-effective tool for AMI diagnosis.

Funder

National Natural Science Foundation of China

The open project of Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3