3D Bioprinting of Multi-Material Decellularized Liver Matrix Hydrogel at Physiological Temperatures

Author:

Khati Vamakshi,Ramachandraiah Harisha,Pati FalguniORCID,Svahn Helene A.,Gaudenzi Giulia,Russom Aman

Abstract

Bioprinting is an acclaimed technique that allows the scaling of 3D architectures in an organized pattern but suffers from a scarcity of appropriate bioinks. Decellularized extracellular matrix (dECM) from xenogeneic species has garnered support as a biomaterial to promote tissue-specific regeneration and repair. The prospect of developing dECM-based 3D artificial tissue is impeded by its inherent low mechanical properties. In recent years, 3D bioprinting of dECM-based bioinks modified with additional scaffolds has advanced the development of load-bearing constructs. However, previous attempts using dECM were limited to low-temperature bioprinting, which is not favorable for a longer print duration with cells. Here, we report the development of a multi-material decellularized liver matrix (dLM) bioink reinforced with gelatin and polyethylene glycol to improve rheology, extrudability, and mechanical stability. This shear-thinning bioink facilitated extrusion-based bioprinting at 37 °C with HepG2 cells into a 3D grid structure with a further enhancement for long-term applications by enzymatic crosslinking with mushroom tyrosinase. The heavily crosslinked structure showed a 16-fold increase in viscosity (2.73 Pa s−1) and a 32-fold increase in storage modulus from the non-crosslinked dLM while retaining high cell viability (85–93%) and liver-specific functions. Our results show that the cytocompatible crosslinking of dLM bioink at physiological temperatures has promising applications for extended 3D-printing procedures.

Funder

Swedish Research Council

European Union

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3