Intelligent Object Recognition of Urban Water Bodies Based on Deep Learning for Multi-Source and Multi-Temporal High Spatial Resolution Remote Sensing Imagery

Author:

Song Shiran,Liu JianhuaORCID,Liu Yuan,Feng Guoqiang,Han Hui,Yao Yuan,Du Mingyi

Abstract

High spatial resolution remote sensing image (HSRRSI) data provide rich texture, geometric structure, and spatial distribution information for surface water bodies. The rich detail information provides better representation of the internal components of each object category and better reflects the relationships between adjacent objects. In this context, recognition methods such as geographic object-based image analysis (GEOBIA) have improved significantly. However, these methods focus mainly on bottom-up classifications from visual features to semantic categories, but ignore top-down feedback which can optimize recognition results. In recent years, deep learning has been applied in the field of remote sensing measurements because of its powerful feature extraction ability. A special convolutional neural network (CNN) based region proposal generation and object detection integrated framework has greatly improved the performance of object detection for HSRRSI, which provides a new method for water body recognition based on remote sensing data. This study uses the excellent “self-learning ability” of deep learning to construct a modified structure of the Mask R-CNN method which integrates bottom-up and top-down processes for water recognition. Compared with traditional methods, our method is completely data-driven without prior knowledge, and it can be regarded as a novel technical procedure for water body recognition in practical engineering application. Experimental results indicate that the method produces accurate recognition results for multi-source and multi-temporal water bodies, and can effectively avoid confusion with shadows and other ground features.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference61 articles.

1. River Linear Water Adaptive Auto-extraction on Remote Sensing Image Aided by DEM;Zhu;Acta Geod. Cartogr. Sin.,2013

2. Water-body identification in cloud contaminated NOAA/AVHRR image;Sheng;Environ. Remote Sens.,1994

3. A description model based on knowledge for automatically recognizing water from NOAA/AVHRR;Zhou;J. Nat. Disasters,1996

4. Automatically extracting remote sensing information for water bodies;Du;J. Remote Sens.,1998

5. Study on the water-body extraction methods of remote sensing information mechanism;Yang;Geogr. Res.,1998

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3