Author:
Zhu Jie,Shao Tangsha,Li Guiyou,Yang Yuhang,Chen Zhen,Lan Tianxiang,Wang Jinge,Zhao Yuhan,Liu Shuangqing
Abstract
Investigation on the pore-fracture features and crack propagation behavior of coal is necessary to prevent coal mine disasters. The pore structure features of coal samples taken from high gas seam were obtained by mercury injection porosimetry (MIP) and gas adsorption methods. The process of deformation and failure for coal samples under three-point bending conditions were obtained. The results demonstrate that the adsorption pores with diameter less than 100 nm are the most developed and their surfaces are the roughest (the average surface fractal dimension Ds is 2.933). The surface of micro-cracks is smoother (Ds is 2.481), which is conducive to gas seepage. It may be the explanation for that 14-3# coal seam is a high gas seam, while there was almost no gas outburst accident so far. At the initial stage of crack propagation, the main crack on the coal sample expanded along the direction of the natural cracks. In the process of crack propagation, the surface fractal dimension of the main crack increased, suggesting that the bending degree of the main crack enhanced. The brittle characteristics of coal samples can be reflected by the ratio of the dissipated energy to the accumulated energy.
Funder
The National Nature Science Foundation of China
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献