Investigating the Behavior of Waste Alumina Powder and Nylon Fibers for Eco-Friendly Production of Self-Compacting Concrete

Author:

Abbas SafeerORCID,Ishaq Malik Asad Ali,Kazmi Syed Minhaj SaleemORCID,Munir Muhammad JunaidORCID,Ali Shahid

Abstract

Self-compacting concrete (SCC) incorporating secondary raw materials has been extensively used around the globe due to its improved fresh, mechanical and durability properties. This study was planned to evaluate the suitability of locally available waste alumina powder (AP) and nylon textile fibers (NF) as a partial replacement for fine and coarse aggregates with the ultimate goal to locally produce SCC with desired properties. The used AP was acquired from a local market and NF was collected from a local textile factory. Various dosages of AP (10%, 20%, 30%, 40% and 50% by volume of fine aggregates) and NF (1% and 2% by volume of coarse aggregates) were studied. Tests including slump flow, V-funnel and J-ring tests were performed for examining the fresh properties of developed SCC. Results showed that the addition of AP has an insignificant effect on the superplasticizer dosage for maintaining a constant flow of 70 cm. However, a higher dosage of superplasticizer was required for a mixture with increasing dosages of NF to sustain a constant flow. Similarly, slump flow time (for a spread of 50 cm) and V-funnel time increased for mixtures with higher dosages of AP and NF. Tested SCC mixtures incorporating 40% and 50% of AP with 1% and 2% of NF showed an extreme blocking assessment due to their increased interparticle friction, the higher water absorption capacity of used AP and NF leading to increased flow resistance and hence, showed lower passing ability. The compressive strength was 16% higher for specimens incorporating 40% of AP due to the filling effect of AP which fills the micro-pores, leading to a more dense and compact internal micro-structure, confirmed through scanning electron microscopy analysis. An ultrasonic pulse velocity test conducted on hardened specimens verified the findings of the compressive strength results. Moreover, it was observed that NF has an insignificant effect on the compressive strength; however, flexural strength was increased due to the incorporation of NF, especially at higher dosages of AP.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3