Abstract
Self-compacting concrete (SCC) incorporating secondary raw materials has been extensively used around the globe due to its improved fresh, mechanical and durability properties. This study was planned to evaluate the suitability of locally available waste alumina powder (AP) and nylon textile fibers (NF) as a partial replacement for fine and coarse aggregates with the ultimate goal to locally produce SCC with desired properties. The used AP was acquired from a local market and NF was collected from a local textile factory. Various dosages of AP (10%, 20%, 30%, 40% and 50% by volume of fine aggregates) and NF (1% and 2% by volume of coarse aggregates) were studied. Tests including slump flow, V-funnel and J-ring tests were performed for examining the fresh properties of developed SCC. Results showed that the addition of AP has an insignificant effect on the superplasticizer dosage for maintaining a constant flow of 70 cm. However, a higher dosage of superplasticizer was required for a mixture with increasing dosages of NF to sustain a constant flow. Similarly, slump flow time (for a spread of 50 cm) and V-funnel time increased for mixtures with higher dosages of AP and NF. Tested SCC mixtures incorporating 40% and 50% of AP with 1% and 2% of NF showed an extreme blocking assessment due to their increased interparticle friction, the higher water absorption capacity of used AP and NF leading to increased flow resistance and hence, showed lower passing ability. The compressive strength was 16% higher for specimens incorporating 40% of AP due to the filling effect of AP which fills the micro-pores, leading to a more dense and compact internal micro-structure, confirmed through scanning electron microscopy analysis. An ultrasonic pulse velocity test conducted on hardened specimens verified the findings of the compressive strength results. Moreover, it was observed that NF has an insignificant effect on the compressive strength; however, flexural strength was increased due to the incorporation of NF, especially at higher dosages of AP.
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献