Author:
Feng Xin,Li Mingjun,Wang Jianming,Zou Xianrui,Wang Hongshui,Wang Donghui,Zhou Huan,Yang Lei,Gao Wei,Liang Chunyong
Abstract
It is critical to construct stimuli-responsive multifunctional nanoparticles for the drug delivery system for cancer treatment. Zeolitic imidazolate framework-8 (ZIF-8) has a large specific surface area and decomposes quickly under acidic conditions, which presents an excellent potential in pH-sensitive drug carriers. However, the mere chemotherapeutic drug loaded into ZIF-8 is a monotherapy and may restrict the therapeutic efficacy of malignancies. In this work, an effective nanoparticle-based delivery platform is established to simultaneously encapsulate doxorubicin (DOX) and MXene quantum dot (MQD) in ZIF-8 nanoparticles (MQD@ZIF-8/DOX). Under near-infrared (NIR) laser (808 nm) and UV light (365 nm) irradiation, MQD@ZIF-8 demonstrates a high photothermal conversion efficiency and reactive oxygen species (ROS) production, which shows excellent photothermal therapy and photodynamic therapy effects. Furthermore, the release of DOX-loaded into MQD@ZIF-8 nanoparticles is significantly increased under NIR laser irradiation and at pH 5.6, indicating that acidic conditions and NIR laser irradiation can be effectively combined to stimulate the drug release. The cellular experiments show that MQD@ZIF-8/DOX has an obvious killing effect on HeLa cells and achieves the combined anti-tumor effect of chemotherapy and phototherapy.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Science and Technology Project of Hebei Education Department
Subject
General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献