Recent Advances in Metal-Based Nanoparticle-Mediated Biological Effects in Arabidopsis thaliana: A Mini Review

Author:

Geng Min,Li Linlin,Ai Mingjun,Jin Jun,Hu Die,Song KaiORCID

Abstract

The widespread application of metal-based nanoparticles (MNPs) has prompted great interest in nano-biosafety. Consequently, as more and more MNPs are released into the environment and eventually sink into the soil, plants, as an essential component of the ecosystem, are at greater risk of exposure and response to these MNPs. Therefore, to understand the potential impact of nanoparticles on the environment, their effects should be thoroughly investigated. Arabidopsis (Arabidopsis thaliana L.) is an ideal model plant for studying the impact of environmental stress on plants’ growth and development because the ways in which Arabidopsis adapt to these stresses resemble those of many plants, and therefore, conclusions obtained from these scientific studies have often been used as the universal reference for other plants. This study reviewed the main findings of present-day interactions between MNPs and Arabidopsis thaliana from plant internalization to phytotoxic effects to reveal the mechanisms by which nanomaterials affect plant growth and development. We also analyzed the remaining unsolved problems in this field and provide a perspective for future research directions.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ecotoxicity and in vitro safety profile of the eco-friendly silver and titanium dioxide nanoparticles;Process Safety and Environmental Protection;2024-08

2. Unraveling the impact of nanopollution on plant metabolism and ecosystem dynamics;Plant Physiology and Biochemistry;2024-05

3. Undeniable Positive Impacts of Metal Nanoparticles in Plant Tissue Culture;Metal Nanoparticles in Plant Cell, Tissue and Organ Culture;2024

4. Toxicological concerns of nanomaterials in crop plants;Nanotoxicology for Agricultural and Environmental Applications;2024

5. Nanotoxicity evaluation methods and challenges;Nanotoxicology for Agricultural and Environmental Applications;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3