Abstract
This article presents experimental data and nonlinear finite element analysis (NLFEA) modeling for an innovative buckling restrained bracing (BRB) system. The data were collected from qualification testing of introduced BRBs per the AISC 341 test provision and finite element modeling. The BRB is made of three parts: core bar, restraining unit, and end units, in which duplicates of three different core bar cross sections (i.e., fully threaded, threaded notched, and smooth shaved) were tested. The BRBs introduced in this research come with innovative end parts, so-called fingers. These fingers provide the longitudinal gap required in every BRB system and simultaneously prevent buckling of the core bar at the end regions at both ends of the BRB sample, thus facilitating an easy core replacement if it gets damaged in the event of an earthquake. The measured parameters were the applied cyclic load and the corresponding displacement. Analysis of the acquired data illustrated an almost symmetric hysteric behavior with a little higher capacity under compression but a noticeable overall ductility of 4. Moreover, finite element modeling data for one type of core bar (fully threaded) were curated. The data presented in this paper will be valuable for fabricating BRBs in practice and further research on the topic considered.
Subject
Information Systems and Management,Computer Science Applications,Information Systems
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献