Analysis of UAV-Acquired Wetland Orthomosaics Using GIS, Computer Vision, Computational Topology and Deep Learning

Author:

Kentsch SarahORCID,Cabezas MarianoORCID,Tomhave Luca,Groß Jens,Burkhard BenjaminORCID,Lopez Caceres Maximo LarryORCID,Waki Katsushi,Diez YagoORCID

Abstract

Invasive blueberry species endanger the sensitive environment of wetlands and protection laws call for management measures. Therefore, methods are needed to identify blueberry bushes, locate them, and characterise their distribution and properties with a minimum of disturbance. UAVs (Unmanned Aerial Vehicles) and image analysis have become important tools for classification and detection approaches. In this study, techniques, such as GIS (Geographical Information Systems) and deep learning, were combined in order to detect invasive blueberry species in wetland environments. Images that were collected by UAV were used to produce orthomosaics, which were analysed to produce maps of blueberry location, distribution, and spread in each study site, as well as bush height and area information. Deep learning networks were used with transfer learning and unfrozen weights in order to automatically detect blueberry bushes reaching True Positive Values (TPV) of 93.83% and an Overall Accuracy (OA) of 98.83%. A refinement of the result masks reached a Dice of 0.624. This study provides an efficient and effective methodology to study wetlands while using different techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. Adaptive evolution in invasive species

2. Invasive Species, Environmental Change and Management, and Health

3. Update on the environmental and economic costs associated with alien-invasive species in the United States

4. Tackling Invasive Alien Species in Europe: the top 20 issues

5. Invasive Alien Species Indicators in Europe; EEA Technical Report; 2012https://op.europa.eu/en/publication-detail/-/publication/0e70dca6-0213-4420-b04a-8951cb9a0df7/language-en

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3