Inferring the Driver’s Lane Change Intention through LiDAR-Based Environment Analysis Using Convolutional Neural Networks

Author:

Díaz-Álvarez AlbertoORCID,Clavijo MiguelORCID,Jiménez FelipeORCID,Serradilla FranciscoORCID

Abstract

Most of the tactic manoeuvres during driving require a certain understanding of the surrounding environment from which to devise our future behaviour. In this paper, a Convolutional Neural Network (CNN) approach is used to model the lane change behaviour to identify when a driver is going to perform this manoeuvre. To that end, a slightly modified CNN architecture adapted to both spatial (i.e., surrounding environment) and non-spatial (i.e., rest of variables such as relative speed to the front vehicle) input variables. Anticipating a driver’s lane change intention means it is possible to use this information as a new source of data in wide range of different scenarios. One example of such scenarios might be the decision making process support for human drivers through Advanced Driver Assistance Systems (ADAS) fed with the data of the surrounding cars in an inter-vehicular network. Another example might even be its use in autonomous vehicles by using the data of a specific driver profile to make automated driving more human-like. Several CNN architectures have been tested on a simulation environment to assess their performance. Results show that the selected architecture provides a higher degree of accuracy than random guessing (i.e., assigning a class randomly for each observation in the data set), and it can capture subtle differences in behaviour between different driving profiles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel collision avoidance strategy for highway overtaking considering the driver’s steering intent;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-05-02

2. Vehicle Trajectory Prediction Using Deep Learning for Advanced Driver Assistance Systems and Autonomous Vehicles;2024 IEEE International Systems Conference (SysCon);2024-04-15

3. A CNN-LSTM Based Model to Predict Trajectory of Human-Driven Vehicle;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

4. Impacts of Connected and Automated Vehicles on Road Safety and Efficiency: A Systematic Literature Review;IEEE Transactions on Intelligent Transportation Systems;2023-03

5. Driver Behavior Modeling Toward Autonomous Vehicles: Comprehensive Review;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3