The Role of Climate Niche, Geofloristic History, Habitat Preference, and Allometry on Wood Density within a California Plant Community

Author:

Nelson Rebecca A.,Francis Emily J.,Berry Joseph A.,Cornwell William K.,Anderegg Leander D. L.

Abstract

Research Highlights: To better understand within-community variation in wood density, our study demonstrated that a more nuanced approach is required beyond the climate–wood density correlations used in global analyses. Background and Objectives: Global meta-analyses have shown higher wood density is associated with higher temperatures and lower rainfall, while site-specific studies have explained variation in wood density with structural constraints and allometry. On a regional scale, uncertainty exists as to what extent climate and structural demands explain patterns in wood density. We explored the role of species climate niche, geofloristic history, habitat specialization, and allometry on wood density variation within a California forest/chaparral community. Materials and Methods: We collected data on species wood density, climate niche, geofloristic history, and riparian habitat specialization for 20 species of trees and shrubs in a California forest. Results: We found a negative relationship between wood density and basal diameter to height ratio for riparian species and no relationship for non-riparian species. In contrast to previous studies, we found that climate signals had weak relationships with wood density, except for a positive relationship between wood density and the dryness of a species’ wet range edge (species with drier wet range margins have higher wood density). Wood density, however, did not correlate with the aridity of species’ dry range margins. Geofloristic history had no direct effect on wood density or climate niche for modern California plant communities. Conclusions: Within a California plant community, allometry influences wood density for riparian specialists, but non-riparian plants are ‘overbuilt’ such that wood density is not related to canopy structure. Meanwhile, the relationship of wood density to species’ aridity niches challenges our classic assumptions about the adaptive significance of high wood density as a drought tolerance trait.

Publisher

MDPI AG

Subject

Forestry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3