Effect of Curing Condition and Solvent Content on Mechanical Properties of Zein-Biopolymer-Treated Soil

Author:

Babatunde Quadri Olakunle1,Son Dong Geon1,Kim Sang Yeob2ORCID,Byun Yong-Hoon1

Affiliation:

1. School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea

2. Department of Fire and Disaster Prevention, Konkuk University, 268, Chungwon-daero, Chungju 27478, Republic of Korea

Abstract

The curing condition and solvent composition of biopolymer binders may impact their efficacy for soil stabilization. This study introduces a novel hydrophobic biopolymer, zein, and investigates the effects of solvent and curing conditions on the mechanical properties of zein-treated soils. The zein biopolymer is used to prepare cohesionless soil with various ethanol contents. Unconfined compressive strength and microscopic tests are used to investigate the treated specimens under two different curing conditions. The mechanical properties of the treated specimens are evaluated in terms of compressive strength and the secant elastic modulus. The experimental results show that the compressive strength and elastic modulus increase with the curing period under both curing conditions. Higher curing temperature improves the compressive strength of biopolymer-treated specimens. The linear relationship between compressive strength and the elastic modulus of zein-treated soils shows higher strength and a lower elastic modulus compared to rock. Furthermore, the zein biopolymer shows significant strength improvement compared to the existing biopolymers, including casein and lignin. Thus, the effects of solvent and curing conditions on the mechanical properties of zein-treated soil should be considered for its application to soil stabilization.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3