Risk Assessment of Single-Gully Debris Flow Based on Dynamic Changes in Provenance in the Wenchuan Earthquake Zone: A Case Study of the Qipan Gully

Author:

Su Na1,Xu Linrong12,Yang Bo3ORCID,Li Yongwei1,Gu Fengyu1

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

2. National Engineering Laboratory for High-Speed Railway Construction, Central South University, Changsha 410075, China

3. College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract

After the Wenchuan earthquake on 12 May 2008, a huge amount of loose deposits was generated on the mountain surface in the earthquake zone, and vegetation was severely damaged, providing a rich source of material for debris flow, greatly increasing the danger. For many years, researchers have mainly considered the recovery of slope vegetation in assessing the risk of debris flow post-earthquake. However, field investigations have found that large amounts of the dynamic reserve materials in the gully have an important impact on the risk. Thus, based on field survey data, this paper takes the Qipan gully in Wenchuan County as an object and uses multi-source and multi-scale monitoring methods (Landsat series, Quickbird, and Unmanned Air Vehicle) to analyze and statistically study the provenance of the slope and gully both pre- and post- the earthquake. By comprehensively using game theory combination weighting and the cloud model, a dynamic risk assessment model for debris flow was constructed to evaluate the risk of debris flow from 2005 to 2019. The results show that the slope provenance post-earthquake was 7.7 times that of pre-earthquake, and by 2019 the slope provenance had recovered to the pre-earthquake level. Based on the statistical estimation of the amount of debris flow outbreak and the dredging of the blocking dam recorded in relevant data, the dynamic provenance of debris flow had decreased by about 781.3 × 104 m3 by 2019. Compared with considering slope provenance only, the assessment result of debris flow risk considering both slope and gully provenance is more realistic. The results are expected to provide reference and guidance for dynamic assessment of the risk of debris flow faced by increasing projects in high-seismic-intensity mountainous areas and to ensure the safety of people’s lives and property effectively.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Henan Key Scientific and Technological Project

Open Research Subject of Henan Key Laboratory of Grain and Oil Storage Facility & Safety

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3