Affiliation:
1. School of Civil Engineering, Central South University, Changsha 410075, China
2. National Engineering Laboratory for High-Speed Railway Construction, Central South University, Changsha 410075, China
3. College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
Abstract
After the Wenchuan earthquake on 12 May 2008, a huge amount of loose deposits was generated on the mountain surface in the earthquake zone, and vegetation was severely damaged, providing a rich source of material for debris flow, greatly increasing the danger. For many years, researchers have mainly considered the recovery of slope vegetation in assessing the risk of debris flow post-earthquake. However, field investigations have found that large amounts of the dynamic reserve materials in the gully have an important impact on the risk. Thus, based on field survey data, this paper takes the Qipan gully in Wenchuan County as an object and uses multi-source and multi-scale monitoring methods (Landsat series, Quickbird, and Unmanned Air Vehicle) to analyze and statistically study the provenance of the slope and gully both pre- and post- the earthquake. By comprehensively using game theory combination weighting and the cloud model, a dynamic risk assessment model for debris flow was constructed to evaluate the risk of debris flow from 2005 to 2019. The results show that the slope provenance post-earthquake was 7.7 times that of pre-earthquake, and by 2019 the slope provenance had recovered to the pre-earthquake level. Based on the statistical estimation of the amount of debris flow outbreak and the dredging of the blocking dam recorded in relevant data, the dynamic provenance of debris flow had decreased by about 781.3 × 104 m3 by 2019. Compared with considering slope provenance only, the assessment result of debris flow risk considering both slope and gully provenance is more realistic. The results are expected to provide reference and guidance for dynamic assessment of the risk of debris flow faced by increasing projects in high-seismic-intensity mountainous areas and to ensure the safety of people’s lives and property effectively.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Henan Key Scientific and Technological Project
Open Research Subject of Henan Key Laboratory of Grain and Oil Storage Facility & Safety
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献