Multi-Objective Optimal Deployment of Road Traffic Monitoring Cameras: A Case Study in Wujiang, China

Author:

Li Yiming1,Cheng Zeyang2,Yao Xinpeng1,Kong Zhiqiang2,Wang Zijian1,Liu Mengfei1

Affiliation:

1. Shandong Key Laboratory of Smart Transportation (Preparation), Jinan 250101, China

2. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

This study presents a multi-objective optimal framework for deploying traffic monitoring cameras at road networks. Compared with previous studies that focused on addressing single traffic problem such as OD estimation, link flow observation, path flow reconstruction, and travel time estimation, this study aims to address a comprehensive traffic management problem, including crash prevention, traffic violation governance, and traffic efficiency improvement. First, a potential principle for selecting the location of traffic monitoring deployment is determined, taking into account the key signalized intersections, areas prone to traffic congestion, crash-prone spots, and areas prone to traffic violations. Then, a multi-objective optimal model is developed to minimize the ATFM (i.e., average traffic volume of each five minutes), TCF (i.e., traffic crash frequency), and TVF (i.e., traffic violation frequency) while adhering to cost constraints. Finally, RVEA and NSGA-II algorithms are used to solve the multi-objective optimal model, respectively, and a comprehensive metric is proposed to evaluate the deployment schemes. The case study results demonstrate that the solutions obtained by the RVEA algorithm outperform those of the NSGA-II algorithm, and the best traffic monitoring deployment rate is 62.79%, under cost constraints. In addition, the comparison using the FAHP method also illustrates that the RVEA scheme is superior to the NSGA-II scheme. The above research results could potentially be used to optimize the locations of traffic cameras in road networks, which help to improve traffic management.

Funder

Shandong Key Laboratory of Smart Transportation

National Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3