Evaluation of Sustainable Slope Stability with Anti-Slide Piles Using an Integrated AHP-VIKOR Methodology

Author:

Tuskan Yesim1ORCID,Basari Ender1ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa 45140, Turkey

Abstract

The sustainable design of major civil engineering projects, such as landslide management and slope stability, provides new opportunities for our society regarding the global energy crisis. These sources offer an effective solution to environmental issues and human energy needs. Slope stability, as a critical aspect of ensuring public safety and protection of infrastructure, often leads to disastrous consequences, highlighting the significance of designing effective and sustainable measures to mitigate the risks associated with landslides. Although anti-slide piles have become a widely used method to enhance slope stability, this paper investigates how the Analytic Hierarchy Process (AHP) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methodologies can be combined to achieve a sustainable design for anti-slide piles, simultaneously considering environmental, economic, safety, and technical factors. Through the integration of AHP-VIKOR and a case study, this paper demonstrates an effective approach to prioritizing sustainability in the design process of anti-slide pile systems, evaluating five main criteria—slope stability, sustainability, anti-slide pile capacity, cost, and ease of construction—and five sub-criteria. The proposed methodology is validated through a case study, wherein various design alternatives for anti-slide piles are evaluated based on sustainable requirements. The results indicate that the slope stability criterion has the highest weight of 0.404, followed by anti-slide pile capacity (0.283), sustainability (0.129), and cost (0.146) criteria. The ease of construction has the lowest weight of 0.038. As a result of the evaluations, it has been seen that, if the sustainability criteria are included in the analyses, the anti-slide pile alternatives are determined in the range of ξ = 0.1–0.3 and s/D = 2.0–3.0, compared to the scenarios where only the economic and technical criteria are satisfied. A pile geometry of diameter, D = 1.00 m, is the most sustainable value within the selected pile spacing intervals, meeting the criteria of slope safety, pile capacity, cost, and ease of construction. This hybrid approach allows for a more balanced consideration of a multi-criteria decision, while considering the sustainability aspects of anti-slide pile selection.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3