Exploring the Differences in Tree Species Classification between Typical Forest Regions in Northern and Southern China

Author:

Zhang Jia12ORCID,Li Hao12,Wang Jia12,Liang Yuying12,Li Rui12,Sun Xiaoting12

Affiliation:

1. Beijing Key Laboratory of Precision Forestry, Beijing Forestry University, Beijing 100083, China

2. Institute of GIS, RS & GPS, Beijing Forestry University, Beijing 100083, China

Abstract

Focusing on the trend of continuously seeking high-precision tree species classification results in small areas from the perspectives of sensors and classification algorithms. This study aimed to explore the effects of data sources, classifiers, and seasons on classification accuracy in regions with significant environmental variation, examining patterns of tree species classification to enhance the transferability of classification. Considering two typical forest distribution regions in the north and south of China, this study utilized the revisitation cycle and open-source advantages of Sentinel-2 and Landsat-8. Leveraging the Google Earth Engine (GEE) platform, this study captured spectral features, vegetation indices, and texture features for single seasonal and seasonal combination images. With the assistance of Sentinel-1A and SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model), backscattering coefficient features and topographical features were extracted and input with features captured from Sentinel-2 and Landsat-8 into three types of classifiers: random forest (RF), support vector machine (SVM), and gradient tree boosting (GTB) for major tree species classification. In this research, we discovered that the best classification for single season in the northern study area was spring, whereas, for the southern study area, it was winter. Seasonal combination images effectively improved the classification accuracy of single seasonal images, with Sentinel-2 imagery displaying better classification performance compared to Landsat-8, and the optimal classifier differing between the north and the south. The inclusion of topographical or backscattering coefficient features in the four-season combination imagery contributed to improvements in classification accuracy, with topographical features significantly enhancing the classification performance in the topographically varied southern study area. The evaluation of feature importance indicated that elevation was the most critical feature for classification, while spectral features and vegetation indices were also significant. In the southern study area with large topographical discrepancies, subdividing into different terrain units led to improved tree species classification accuracy in medium-altitude, gentle slope areas. These findings provide insights into the regularity of enhancing tree species classification accuracy in environmentally diverse areas through the use of multi-source remote sensing data and multi-seasonal imagery. Consequently, the results offer a reference for the identification of tree species across large areas and the creation of spatial distribution maps.

Funder

Fundamental Research Funds for the Beijing Natural Science Foundation Program

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3