LIDAR Point Cloud Registration for Sensing and Reconstruction of Unstructured Terrain

Author:

Zhu Qingyuan,Wu Jinjin,Hu Huosheng,Xiao ChunshengORCID,Chen Wei

Abstract

When 3D laser scanning (LIDAR) is used for navigation of autonomous vehicles operated on unstructured terrain, it is necessary to register the acquired point cloud and accurately perform point cloud reconstruction of the terrain in time. This paper proposes a novel registration method to deal with uneven-density and high-noise of unstructured terrain point clouds. It has two steps of operation, namely initial registration and accurate registration. Multisensor data is firstly used for initial registration. An improved Iterative Closest Point (ICP) algorithm is then deployed for accurate registration. This algorithm extracts key points and builds feature descriptors based on the neighborhood normal vector, point cloud density and curvature. An adaptive threshold is introduced to accelerate iterative convergence. Experimental results are given to show that our two-step registration method can effectively solve the uneven-density and high-noise problem in registration of unstructured terrain point clouds, thereby improving the accuracy of terrain point cloud reconstruction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3