Abstract
When 3D laser scanning (LIDAR) is used for navigation of autonomous vehicles operated on unstructured terrain, it is necessary to register the acquired point cloud and accurately perform point cloud reconstruction of the terrain in time. This paper proposes a novel registration method to deal with uneven-density and high-noise of unstructured terrain point clouds. It has two steps of operation, namely initial registration and accurate registration. Multisensor data is firstly used for initial registration. An improved Iterative Closest Point (ICP) algorithm is then deployed for accurate registration. This algorithm extracts key points and builds feature descriptors based on the neighborhood normal vector, point cloud density and curvature. An adaptive threshold is introduced to accelerate iterative convergence. Experimental results are given to show that our two-step registration method can effectively solve the uneven-density and high-noise problem in registration of unstructured terrain point clouds, thereby improving the accuracy of terrain point cloud reconstruction.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献