Impulse Noise Denoising Using Total Variation with Overlapping Group Sparsity and Lp-Pseudo-Norm Shrinkage

Author:

Wang Lingzhi,Chen Yingpin,Lin Fan,Chen Yuqun,Yu Fei,Cai Zongfu

Abstract

Models based on total variation (TV) regularization are proven to be effective in removing random noise. However, the serious staircase effect also exists in the denoised images. In this study, two-dimensional total variation with overlapping group sparsity (OGS-TV) is applied to images with impulse noise, to suppress the staircase effect of the TV model and enhance the dissimilarity between smooth and edge regions. In the traditional TV model, the L1-norm is always used to describe the statistics characteristic of impulse noise. In this paper, the Lp-pseudo-norm regularization term is employed here to replace the L1-norm. The new model introduces another degree of freedom, which better describes the sparsity of the image and improves the denoising result. Under the accelerated alternating direction method of multipliers (ADMM) framework, Fourier transform technology is introduced to transform the matrix operation from the spatial domain to the frequency domain, which improves the efficiency of the algorithm. Our model concerns the sparsity of the difference domain in the image: the neighborhood difference of each point is fully utilized to augment the difference between the smooth and edge regions. Experimental results show that the peak signal-to-noise ratio, the structural similarity, the visual effect, and the computational efficiency of this new model are improved compared with state-of-the-art denoising methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3