Affiliation:
1. Shenzhen Power Supply Bureau Co., Ltd., Shenzhen 518001, China
2. College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Abstract
The combined insulation interface of a high-voltage cable and accessories is the weakest part of a cable system. In this paper, the parameters of the dielectric constant, thermal conductivity, and elastic modulus of cross-linked polyethylene (XLPE) and silicone rubber (SIR) are obtained experimentally. On this basis, the model of a specific type of 110 kV cable and prefabricated insulation joint is established. A simulation of the electric–thermal–stress coupling field in the presence of typical defects in the main insulation–inner semi-conductive (SEMI) shielding layer (XLPE/SEMI interface) and the main insulation–silicone rubber insulation layer (XLPE/SIR interface) is studied. The simulation results show that at the XLPE/SIR interface, the electric field distortion caused by bubble defects reached 20.17 kV/mm, and the temperature rose to 56.15 °C. The effect of air-gap defects on the interface is similar to that of bubble defects. In addition, the semi-conductive impurity defects induced an increase in temperature to 56.82 °C and an increase in stress to 0.32 MPa. At the XLPE/SEMI interface, the electric field distortion induced by bubble defects was 19.98 kV/mm, and the temperature rose to 61.72 °C. The electric field distortion caused by metallic and semi-conductive defects was 8.44 kV/mm and 8.64 kV/mm, respectively. This study serves as a reference for the fault analysis and the operation and maintenance of cable accessories.
Funder
Research on electrification detection technology of insulation state of distribution cable based on harmonic component characteristics