Detection Method of External Damage Hazards in Transmission Line Corridors Based on YOLO-LSDW

Author:

Zou Hongbo12,Yang Jinlong1,Sun Jialun3,Yang Changhua1,Luo Yuhong1,Chen Jiehao1

Affiliation:

1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China

2. Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station, China Three Gorges University, Yichang 443002, China

3. Zhangjiakou Power Supply Bureau of State Grid Jibei Electric Power Co., Ltd., Zhangjiakou 075000, China

Abstract

To address the frequent external damage incidents to transmission line corridors caused by construction machinery such as excavators and cranes, this paper constructs a dataset of external damage hazards in transmission line corridors and proposes a detection method based on YOLO-LSDW for these hazards. Firstly, by incorporating the concept of large separable kernel attention (LSKA), the spatial pyramid pooling layer is improved to enhance the information exchange between different feature levels, effectively reducing background interference on external damage hazard targets. Secondly, in the neck network, the traditional convolution is replaced with a ghost-shuffle convolution (GSConv) method, introducing a lightweight slim-neck feature fusion structure. This improves the extraction capability for small object features by fusing deep semantic information with shallow detail features, while also reducing the model’s computational load and parameter count. Then, the original YOLOv8 head is replaced with a dynamic head, which combines scale, spatial, and task attention mechanisms to enhance the model’s detection performance. Finally, the wise intersection over union (WIoU) loss function is adopted to optimize the model’s convergence speed and detection performance. Evaluated on the self-constructed dataset of external damage hazards in transmission line corridors, the improved algorithm shows significant improvements in key metrics, with mAP@0.5 and mAP@0.5:0.95 increasing by 3.4% and 4.6%, respectively, compared to YOLOv8s. Additionally, the model’s computational load and parameter count are reduced, and it maintains a high detection speed of 96.2 frames per second, meeting real-time detection requirements.

Funder

Science and Technology Program of the Headquarters of State Grid Corporation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3