Passive Islanding Detection of Inverter-Based Resources in a Noisy Environment

Author:

Amini Hossein1ORCID,Mehrizi-Sani Ali1ORCID,Noroozian Reza2ORCID

Affiliation:

1. The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

2. Department of Electrical Engineering, University of Zanjan, University Blvd., Zanjan 3879145371, Iran

Abstract

Islanding occurs when a load is energized solely by local generators and can result in frequency and voltage instability, changes in current, and poor power quality. Poor power quality can interrupt industrial operations, damage sensitive electrical equipment, and induce outages upon the resynchronization of the island with the grid. This study proposes an islanding detection method employing a Duffing oscillator to analyze voltage fluctuations at the point of common coupling (PCC) under a high-noise environment. Unlike existing methods, which overlook the noise effect, this paper mitigates noise impact on islanding detection. Power system noise in PCC measurements arises from switching transients, harmonics, grounding issues, voltage sags and swells, electromagnetic interference, and power quality issues that affect islanding detection. Transient events like lightning-induced traveling waves to the PCC can also introduce noise levels exceeding the voltage amplitude by more than seven times, thus disturbing conventional detection techniques. The noise interferes with measurements and increases the nondetection zone (NDZ), causing failed or delayed islanding detection. The Duffing oscillator nonlinear dynamics enable detection capabilities at a high noise level. The proposed method is designed to detect the PCC voltage fluctuations based on the IEEE standard 1547 through the Duffing oscillator. For the voltages beyond the threshold, the Duffing oscillator phase trajectory changes from periodic to chaotic mode and sends an islanded operation command to the inverter. The proposed islanding detection method distinguishes switching transients and faults from an islanded operation. Experimental validation of the method is conducted using a 3.6 kW PV setup.

Funder

National Science Foundation

State of Virginia’s Commonwealth Cyber Initiative

U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office

Manitoba Hydro International

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3