Work-Related Risk Assessment According to the Revised NIOSH Lifting Equation: A Preliminary Study Using a Wearable Inertial Sensor and Machine Learning

Author:

Donisi LeandroORCID,Cesarelli GiuseppeORCID,Coccia ArmandoORCID,Panigazzi Monica,Capodaglio Edda Maria,D’Addio Giovanni

Abstract

Many activities may elicit a biomechanical overload. Among these, lifting loads can cause work-related musculoskeletal disorders. Aspiring to improve risk prevention, the National Institute for Occupational Safety and Health (NIOSH) established a methodology for assessing lifting actions by means of a quantitative method based on intensity, duration, frequency and other geometrical characteristics of lifting. In this paper, we explored the machine learning (ML) feasibility to classify biomechanical risk according to the revised NIOSH lifting equation. Acceleration and angular velocity signals were collected using a wearable sensor during lifting tasks performed by seven subjects and further segmented to extract time-domain features: root mean square, minimum, maximum and standard deviation. The features were fed to several ML algorithms. Interesting results were obtained in terms of evaluation metrics for a binary risk/no-risk classification; specifically, the tree-based algorithms reached accuracies greater than 90% and Area under the Receiver operating curve characteristics curves greater than 0.9. In conclusion, this study indicates the proposed combination of features and algorithms represents a valuable approach to automatically classify work activities in two NIOSH risk groups. These data confirm the potential of this methodology to assess the biomechanical risk to which subjects are exposed during their work activity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3