Study on Process Mineralogy of the Combined Copper Oxide Ore in Tibet and Acid Leaching Behavior with Calcium Fluoride

Author:

Pan Zujiang1,Jian Cuo2,Peng Zaihua12,Fu Xinzhuang1,He Rui1,Yue Tong1ORCID,Sun Wei1

Affiliation:

1. School of Resource Processing and Bioengineering, Central South University, Changsha 410083, China

2. Western Mining Yulong Copper Co., Ltd., Changdu 854000, China

Abstract

The Yulong copper deposit in Tibet is a typical porphyry copper deposit, with about 30 million tons of copper oxide ore in the surface layer. However, more than 40% of the copper resources are in a combination state, resulting in an extraction efficiency of only 50% for copper via the hydrometallurgical process. In this study, the process mineralogy of the combined copper oxide ore was systematically investigated and a calcium fluoride-enhanced leaching process is proposed to increase the leaching efficiency of the combined copper ore. The process mineralogy of the combined copper oxide ore was analyzed using various testing techniques, including chemical analysis, X-ray diffraction, and a process mineralogy parameter testing system (Mineral Liberation Analysis). The results revealed that limonite accounted for 86.12% of the sample, and 63.51% of the copper resource existed in the form of combined copper oxide in limonite. However, it is difficult for the uniformly distributed combined copper oxide in limonite to sufficiently make contact with sulfuric acid, which is the leaching agent, resulting in low copper leaching efficiency. The enhanced leaching behavior of the combined copper oxide ores was also investigated, thereby determining effective and economical enhanced leaching conditions. Under optimal conditions, at a grinding fineness ratio of −0.074 mm (accounting for 85%), liquid-solid ratio of 4:1, sulfuric acid concentration of 50 g/L, temperature of 30 °C, CaF2 dosage of 1% of the ore mass, and leaching time of 4 h, the copper leaching efficiency increased to 60.57%, which was 7.34% higher than that of atmospheric pressure leaching. Finally, the enhanced leaching slag was analyzed using an electron probe microanalyzer. It indicated that fluorine ions can erode the combined copper oxide ore and facilitate the diffusion of hydrogen ions inside the limonite, thereby achieving a strengthening effect.

Funder

Fundamental Research Funds for the Central Universities of Central South University Project

Hunan Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3