Research on the Grinding Process of Superhard Particles in the Fluidized Bed Opposed Jet Mill Based on the CFD-DEM Methodology

Author:

Shen Lingling1,Jiang Xiao12,Liu Xuedong12ORCID,Liu Hongmei13ORCID,Song Siduo1,Han Qiuge1,He Xu1

Affiliation:

1. School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China

2. Jiangsu Key Laboratory of Green Process Equipment, Changzhou 213164, China

3. Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou 213164, China

Abstract

The process of superhard particle breakage in the grinding zone of the fluidized bed opposed jet mill is investigated using the CFD-DEM (computational fluid dynamics-discrete element method) coupling method with the Tavares UFRJ Breakage Model in the present study. The effects of structural and operational parameters, such as target plate structure, nozzle position, air inlet velocity, and feed rate, on the equipment stress distribution, airflow velocity, pressure field, particle velocity, and cumulative particle size distribution are thoroughly studied to determine the optimal structural and operational parameters. Experimental validation is conducted, including scanning electron microscope (SEM) observation of particle morphology and analysis of particle size distribution of ground product particles. The simulation results indicate that the wear rate of the structure without a target plate is lower than that of the structure with a target plate in the grinding central zone. Therefore, the structure without a target plate is chosen for further investigation. The cumulative particle size distribution after grinding is influenced by nozzle position, air inlet velocity, and feed rate. The particle D50 is positively correlated with nozzle spacing and feed rate, while it is negatively correlated with air inlet velocity. The optimal grinding effect is achieved when the distance between the nozzle and the center of the grinding zone ranges from 52.5 mm to 72.55 mm, the air inlet velocity is 950 m/s, and the feed rate is 10.5 g/s. Through experimental investigation, it has been observed that when the feed rate is 10 g/s, the particle size distribution becomes more uniform. Furthermore, consistent trends in the cumulative particle size distribution in the experiment and simulation results can be found, which validates the present numerical model. It was observed that particles at low feed rates retain certain angular edges, while particle roundness increases at high feed rates.

Funder

Jiangsu Key Laboratory of Green Process Equipment

Natural Science Foundation of Jiangsu Province

Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3