An FMCW Radar for Localization and Vital Signs Measurement for Different Chest Orientations

Author:

Sacco GiuliaORCID,Piuzzi EmanueleORCID,Pittella ErikaORCID,Pisa StefanoORCID

Abstract

This work tests the ability of a frequency-modulated continuous wave (FMCW) radar to measure the respiratory rate and the heartbeat of a subject in challenging indoor scenarios. To simulate a realistic configuration for ambient assisted living (AAL) applications, in which the thorax orientation towards the antenna is typically unknown, four different scenarios were considered. Measurements were performed on five volunteers positioned with the chest, left, back, and right side facing the antenna, respectively. The 5.8 GHz radar and the antennas used for the measurements were suitably designed for the considered application. To obtain a low cost and compact system, series-fed arrays were preferred over other antenna topologies. The geometry of the patches was opportunely shaped to reduce the side lobe level (SLL) and increase the bandwidth, thus ensuring good system performances. In all scenarios, the vital signs extracted from the radar signal were compared with the ones collected by a photoplethysmograph and a respiratory belt, used as references. A statistical analysis of the measured data on the different subjects and orientations was performed, showing that the radar was able to measure with high accuracy both the respiratory rate and the heartbeat in all considered configurations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systematic Literature Review Regarding Heart Rate and Respiratory Rate Measurement by Means of Radar Technology;Sensors;2024-02-04

2. Accurate multi-target vital signs detection method for FMCW radar;Measurement;2023-12

3. Biomedical Radar System for Real-Time Contactless Fall Detection and Indoor Localization;IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology;2023-12

4. Reconfigurable Intelligent Surface-Aided Indoor Radar Monitoring: A Feasibility Study;IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology;2023-12

5. Compact Millimeter Wave Radar for Vital Sign Detection: A Comprehensive Study;2023 16th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3