The Association between Dietary Nutrient Intake and Acceleration of Aging: Evidence from NHANES

Author:

Ma Jianhua1,Li Pingan1ORCID,Jiang Yue1,Yang Xinghua1,Luo Yanxia1,Tao Lixin1ORCID,Guo Xiuhua1ORCID,Gao Bo1ORCID

Affiliation:

1. Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing 100069, China

Abstract

The acceleration of aging is a risk factor for numerous diseases, and diet has been identified as an especially effective anti-aging method. Currently, research on the relationship between dietary nutrient intake and accelerated aging remains limited, with existing studies focusing on the intake of a small number of individual dietary nutrients. Comprehensive research on the single and mixed anti-aging effects of dietary nutrients has not been conducted. This study aimed to comprehensively explore the effects of numerous dietary nutrient intakes, both singly and in combination, on the acceleration of aging. Data for this study were extracted from the 2015–2018 National Health and Nutrition Examination Surveys (NHANES). The acceleration of aging was measured by phenotypic age acceleration. Linear regression (linear), restricted cubic spline (RCS) (nonlinear), and weighted quantile sum (WQS) (mixed effect) models were used to explore the association between dietary nutrient intake and accelerated aging. A total of 4692 participants aged ≥ 20 were included in this study. In fully adjusted models, intakes of 16 nutrients were negatively associated with accelerated aging (protein, vitamin E, vitamin A, beta-carotene, vitamin B1, vitamin B2, vitamin B6, vitamin K, phosphorus, magnesium, iron, zinc, copper, potassium, dietary fiber, and alcohol). Intakes of total sugars, vitamin C, vitamin K, caffeine, and alcohol showed significant nonlinear associations with accelerated aging. Additionally, mixed dietary nutrient intakes were negatively associated with accelerated aging. Single dietary nutrients as well as mixed nutrient intake may mitigate accelerated aging. Moderately increasing the intake of specific dietary nutrients and maintaining dietary balance may be key strategies to prevent accelerated aging.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3