Multi-Temporal InSAR Deformation Monitoring Zongling Landslide Group in Guizhou Province Based on the Adaptive Network Method

Author:

Zhu Yu,Tian BangsenORCID,Xie ChouORCID,Guo Yihong,Fang HaoranORCID,Yang Ying,Wang Qianqian,Zhang MingORCID,Shen Chaoyong,Wei Ronghao

Abstract

Due to the influence of atmospheric phase delays and terrain fluctuation in complex mountainous areas, traditional PS-InSAR technology often fails to select enough measurement points (MPs) and loses effective MPs during phase unwrapping. To solve this problem, this paper proposes an adaptive network construction algorithm, which combines the permanent scatterer (PS) points with the distributed scatterer (DS) points. Firstly, to ensure the extraction quality of the DS points, the covariance matrix of DS points is estimated robustly. Secondly, based on the traditional Delaunay triangulation network, an adaptive network construction method is proposed, which can adaptively increase edge redundancy and network connectivity by considering the edge length, edge coherence, edge number, and spatial distribution. Finally, a total of 31 RADARSAT-2 SAR images that cover the Zongling landslide group in Guizhou Province were used to prove the effectiveness of proposed method. The results show that the quantity of available DS points can be increased by 23.6%, through the robust estimation of the covariance matrix. In addition, it is demonstrated that the proposed network construction algorithm can balance the number, distribution, and quality of edges in the dense and sparse areas of MPs adaptively. This adaptive network construction approach can maintain good connectivity and avoid losing effective MPs to the greatest extent, especially when the scattering points are far away from the reference points. In short, the proposed algorithm improves the number of effective MPs and accuracy of phase unwrapping.

Funder

National Key R&D Program of China

InSAR geological hazard surface deformation monitoring project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3