A Generalized Predictive Controller for a Wind Turbine Providing Frequency Support for a Microgrid

Author:

Prieto Cerón Carlos E.ORCID,Normandia Lourenço Luís F.ORCID,Solís-Chaves Juan S.ORCID,Sguarezi Filho Alfeu J.ORCID

Abstract

The power system is moving away from the centralized generation paradigm. One of the current trends is the microgrid concept, where loads, small generators and renewable energy resources (RERs) that are in close proximity are controlled as one entity. Microgrids also allow for an increase in power availability as they can continue to supply electric power to loads even in the absence of a connection to the main grid. During the transition to islanded operation, microgrids may be subject to frequency disturbances caused by the power imbalance between load and generation. When microgrids contain high shares of renewable energy, the challenge is significantly higher due to the control strategies that aim to maximize power production, which are typically applied to RERs and render them insensitive to grid changes. Therefore, new control strategies need to be developed to enable the participation of RERs in the support of the frequency response. This work proposes a predictive control strategy that is based on a generalized predictive controller (GPC) being applied to the grid side converter of a doubly fed induction generator (DFIG) wind turbine to enable frequency support capabilities. The control objective was to track a time varying power reference signal that was generated according to the deviation from the nominal frequency, thereby enabling the energy storage device to inject power into the microgrid without a communication system. The GPC is a controller belonging to the family of model predictive controllers (MPCs), the main principles of which are the use of a system model to predict future states and the choice of an optimal input to ensure that the reference values are followed. To validate the proposed control strategy, a microgrid was simulated in MATLAB Simscape Electrical. The frequency response using the proposed GPC strategy was compared to another MPC-based strategy, known as finite control set, and a scenario in which the DFIG was not equipped with frequency support capabilities. The results show that the proposed strategy was able to improve the frequency response of the microgrid, reduce frequency oscillations and increase the value of the frequency nadir.

Funder

National Council for Scientific and Technological Development

São Paulo Research Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3