Appraising the Optimal Power Flow and Generation Capacity in Existing Power Grid Topology with Increase in Energy Demand

Author:

Nnachi Gideon UdeORCID,Hamam YskandarORCID,Richards Coneth Graham

Abstract

Several socioeconomic factors such as industrialization, population growth, evolution of modern technologies, urbanization and other social activities do heavily influence the increase in energy demand. A thorough understanding of the effects of energy demand to power grid is highly essential for effective planning and operation of a power system network in terms of the available generation and transmission line capacities. This paper presents an optimal power flow (OPF) with the aim to determine the exact nodes through which the network capacities can be increased. The problem is formulated as a Direct Current (DC) OPF model, which is a linearized version of an Alternating Current (AC) OPF model. The DC-OPF model was solved as a single period OPF problem. The model was tested in several case studies using the topology of the IEEE test systems, and the computation speeds of the different cases were compared. The results suggested dual variables of the problem’s constraints as an extra tool for the network designer to see where to increase the network capacities.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference40 articles.

1. Co-Optimization of Generation Unit Commitment and Transmission Switching With N-1 Reliability

2. A comprehensive state-of-the-art survey on the transmission network expansion planning optimization algorithms;Ude;IEEE Access,2019

3. Optimal power flows

4. History of optimal power flow and formulations;Cain;Fed. Energy Regul. Comm.,2012

5. Optimal power flow algorithms;Glavitsch;Anal. Control Syst. Tech. Electr. Power Syst.,1991

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3