A Big Data Method Based on Random BP Neural Network and Its Application for Analyzing Influencing Factors on Productivity of Shale Gas Wells

Author:

Zhao Qun,Zhang Leifu,Liu Zhongguo,Wang Hongyan,Yao Jie,Zhang Xiaowei,Yu Rongze,Zhou Tianqi,Kang Lixia

Abstract

In recent years, big data and artificial intelligence technology have developed rapidly and are now widely used in fields of geophysics, well logging, and well test analysis in the exploration and development of oil and gas. The development of shale gas requires a large number of production wells, so big data and artificial intelligence technology have inherent advantages for evaluating the productivity of gas wells and analyzing the influencing factors for a whole development block. To this end, this paper combines the BP neural network algorithm with random probability analysis to establish a big data method for analyzing the influencing factors on the productivity of shale gas wells, using artificial intelligence and in-depth extraction of relevant information to reduce the unstable results from single-factor statistical analysis and the BP neural network. We have modeled and analyzed our model with a large amount of data. Under standard well conditions, the influences of geological and engineering factors on the productivity of a gas well can be converted to the same scale for comparison. This can more intuitively and quantitatively reflect the influences of different factors on gas well productivity. Taking 100 production wells in the Changning shale gas block as a case, random BP neural network analysis shows that maximum EUR can be obtained when a horizontal shale gas well has a fracture coefficient of 1.6, Type I reservoir of 18 m thick, optimal horizontal section of 1600 m long, and 20 fractured sections.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3