Abstract
The size reduction in on-board apparatuses in flying platforms, ships, and aerospace vehicles can be achieved by increasing the frequency of the on-board grid voltage. In the case of renewable powered platforms, a grid converter is used that has the primary task of feeding the generated energy into the on-board grid. The paper describes the developed control system of the grid converter, which, in addition to transferring the generated power to the single-phase grid, effectively compensates the reactive power occurring in it. The proposed structure of the proportional resonant regulator with finite gain that cooperates with the single-phase grid was discussed. The use of quadrature estimators of voltage and current enabled independent control of the active and reactive components of the current, thus compensating for the reactive power. The proposed control system structure was implemented on the FPGA platform and experimentally tested in steady state and dynamic condition considering grid disturbances and solar irradiance variations.
Funder
Minister of Education and Science of the Republic of Poland
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献