Solar-Powered Deep Learning-Based Recognition System of Daily Used Objects and Human Faces for Assistance of the Visually Impaired

Author:

Calabrese BernardoORCID,Velázquez RamiroORCID,Del-Valle-Soto CarolinaORCID,de Fazio Roberto,Giannoccaro Nicola IvanORCID,Visconti PaoloORCID

Abstract

This paper introduces a novel low-cost solar-powered wearable assistive technology (AT) device, whose aim is to provide continuous, real-time object recognition to ease the finding of the objects for visually impaired (VI) people in daily life. The system consists of three major components: a miniature low-cost camera, a system on module (SoM) computing unit, and an ultrasonic sensor. The first is worn on the user’s eyeglasses and acquires real-time video of the nearby space. The second is worn as a belt and runs deep learning-based methods and spatial algorithms which process the video coming from the camera performing objects’ detection and recognition. The third assists on positioning the objects found in the surrounding space. The developed device provides audible descriptive sentences as feedback to the user involving the objects recognized and their position referenced to the user gaze. After a proper power consumption analysis, a wearable solar harvesting system, integrated with the developed AT device, has been designed and tested to extend the energy autonomy in the different operating modes and scenarios. Experimental results obtained with the developed low-cost AT device have demonstrated an accurate and reliable real-time object identification with an 86% correct recognition rate and 215 ms average time interval (in case of high-speed SoM operating mode) for the image processing. The proposed system is capable of recognizing the 91 objects offered by the Microsoft Common Objects in Context (COCO) dataset plus several custom objects and human faces. In addition, a simple and scalable methodology for using image datasets and training of Convolutional Neural Networks (CNNs) is introduced to add objects to the system and increase its repertory. It is also demonstrated that comprehensive trainings involving 100 images per targeted object achieve 89% recognition rates, while fast trainings with only 12 images achieve acceptable recognition rates of 55%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference71 articles.

1. Fact Sheet on Blindness and Vision Impairment (October 2019)https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment

2. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis

3. Wearable Assistive Devices for the Blind;Velazquez,2010

4. Making Eye Health a Population Health Imperative: Vision for Tomorrow,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3