Load Frequency Control of Photovoltaic Generation-Integrated Multi-Area Interconnected Power Systems Based on Double Equivalent-Input-Disturbance Controllers

Author:

Yang Minghui,Wang Chunsheng,Hu YukunORCID,Liu Zijian,Yan Caixin,He Shuhang

Abstract

With the rapid increase of photovoltaic (PV) penetration and distributed grid access, photovoltaic generation (PVG)-integrated multi-area power systems may be disturbed by more uncertain factors, such as PVG, grid-tie inverter parameters, and resonance. These uncertain factors will exacerbate the frequency fluctuations of PVG integrated multi-area interconnected power systems. For such system, this paper proposes a load frequency control (LFC) strategy based on double equivalent-input-disturbance (EID) controllers. The PVG linear model and the multi-area interconnected power system linear model were established, respectively, and the disturbances were caused by grid voltage fluctuations in PVG subsystem and PV output power fluctuation and load change in multi-area interconnected power system. In PVG subsystems and multi-area interconnected power systems, two EID controllers add differently estimated equivalent system disturbances, which has the same effect as the actual disturbance, to the input channel to compensate for the impact of actual disturbances. The simulation results in MATLAB/Simulink show that the frequency deviation range of the proposed double EID method is 6% of FA-PI method and 7% of conventional PI method, respectively, when the grid voltage fluctuation and load disturbance exist. The double EID method can better compensate for the effects of external disturbances, suppress frequency fluctuations, and make the system more stable.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3