Abstract
In recent years, there has been a lot of work related to Energy Harvesting Shock Absorbers (EHSA). These devices harvest energy from the movement of the vehicle’s shock absorbers caused by road roughness, braking, acceleration and turning. There are different technologies that can be used in these systems, but it is not clear which would be the best option if you want to replace a conventional shock absorber with an EHSA. This article presents a methodology to compare the performance of different EHSA technologies that can replace a shock absorber with a given damping coefficient. The methodology allows to include different analysis options, including different types of driving cycles, computer vehicle models, input signals and road types. The article tests the methodology in selecting the optimal EHSA technology for a particular shock absorber and vehicle, optimizing at the same time energy recovery. In addition, a study of parameters in each type of technology is included to analyze its influence on the final objective. In the example analyzed, the EHSA technology with a rack and pinion system turned out to be the best. The proposed methodology can be extrapolated to other case studies and design objectives.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference39 articles.
1. Comunicación de la Comisión al Parlamento Europeo, al Consejo, al Comité Económico y Social Europeo y al Comité de las Regiones, UEhttps://ec.europa.eu/transparency/regdoc/rep/1/2016/ES/COM-2016-501-F1-ES-MAIN-PART-1.PDF
2. Energy Harvesting, Ride Comfort, and Road Handling of Regenerative Vehicle Suspensions
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献