Abstract
The hydrodynamic performance of the floating foundation for offshore wind turbines is essential to its stability and energy harvesting. A semi-submersible platform with an integral heave plate is proposed in order to reduce the vertical motion responses. In this study, we compare the heave, pitch, and roll free decay motions of the new platform with a WindFloat-type platform based on Reynolds-Averaged Navier-Stokes simulations. The differences of the linear and quadratic damping properties between these platforms are revealed. Then, a FAST (Fatigue, Aerodynamics, Structures, and Turbulence) model with the consideration of fluid viscosity effects is set up to investigate the performance of the new platform under storm and operational conditions. The time-domain responses, motion spectra, and the mooring-tension statistics of these two platforms are evaluated. It is found that the integral heave plate can increase the viscous hydrodynamic damping, significantly decrease the heave and pitch motion responses, and increase the safety of the mooring cables, especially for the storm condition.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference21 articles.
1. Overview of Study on Aero- and Hydro-Dynamic Interaction for Floating Offshore Wind Turbines;Wan;Chin. Q. Mech.,2017
2. Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables
3. Hydrodynamic characteristics of a separated heave plate mounted at a vertical circular cylinder
4. Damping Characteristics of Heave Plates Attached to Spar Hull;Philip,2012
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献