The Joint Assimilation of Remotely Sensed Leaf Area Index and Surface Soil Moisture into a Land Surface Model

Author:

Rahman Azbina,Maggioni VivianaORCID,Zhang Xinxuan,Houser Paul,Sauer TimothyORCID,Mocko David M.

Abstract

This work tests the hypothesis that jointly assimilating satellite observations of leaf area index and surface soil moisture into a land surface model improves the estimation of land vegetation and water variables. An Ensemble Kalman Filter is used to test this hypothesis across the Contiguous United States from April 2015 to December 2018. The performance of the proposed methodology is assessed for several modeled vegetation and water variables (evapotranspiration, net ecosystem exchange, and soil moisture) in terms of random errors and anomaly correlation coefficients against a set of independent validation datasets (i.e., Global Land Evaporation Amsterdam Model, FLUXCOM, and International Soil Moisture Network). The results show that the assimilation of the leaf area index mostly improves the estimation of evapotranspiration and net ecosystem exchange, whereas the assimilation of surface soil moisture alone improves surface soil moisture content, especially in the western US, in terms of both root mean squared error and anomaly correlation coefficient. The joint assimilation of vegetation and soil moisture information combines the results of individual vegetation and soil moisture assimilations and reduces errors (and increases correlations with the reference datasets) in evapotranspiration, net ecosystem exchange, and surface soil moisture simulated by the land surface model. However, because soil moisture satellite observations only provide information on the water content in the top 5 cm of the soil column, the impact of the proposed data assimilation technique on root zone soil moisture is limited. This work moves one step forward in the direction of improving our estimation and understanding of land surface interactions using a multivariate data assimilation approach, which can be particularly useful in regions of the world where ground observations are sparse or missing altogether.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3