An Event-Based Stochastic Parametric Rainfall Simulator (ESPRS) for Urban Stormwater Simulation and Performance in a Sponge City

Author:

Yang Yuanyuan1,Xu Xiaoyan1,Liu Dengfeng1ORCID

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

Abstract

The temporal heterogeneity of rainfall is substantial in urban catchments, and it often has huge impacts on stormwater simulation and management. Using a design storm with a fixed pattern may cause uncertainties in hydrological modeling. Here, we propose an event-based stochastic parametric rainfall simulator (ESPRS) for stormwater simulation in a sponge city with green roofs, permeable pavements, and bioretention cells. In the ESPRS, we used five distributions to fit the measured rainfall events and evaluated their performance using Akaike’s Information Criterion, Anderson—Darling goodness-of-fit test, and p-values. The vast rainfall time series data generated using the ESPRS were used to run the storm water management model for outflow simulations in the catchment, thus revealing the influence of temporal rainfall characteristics on the hydrological responses. The results showed the following: (1) The ESPRS outperforms the Chicago method in predicting extreme precipitation events, and its control factors are the rainfall peak period, rainfall peak fraction, and cumulative rainfall fraction at the peak period. (2) The best-fit functions for the rainfall depth in each period have different distributions, mostly being in lognormal, gamma, and generalized extreme value distributions. (3) Rear-type precipitation events with high peak fractions are the most negative pattern for outflow control. The developed ESPRS can suitably reproduce rainfall time series for urban stormwater management.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Joint Institute of the Internet of Water and Digital Water Governance

Shaanxi Provincial Department of Education Funded Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3