Masitinib Inhibits Hepatitis A Virus Replication

Author:

Sasaki-Tanaka Reina1ORCID,Shibata Toshikatsu1,Moriyama Mitsuhiko1ORCID,Kogure Hirofumi1ORCID,Hirai-Yuki Asuka2,Okamoto Hiroaki3ORCID,Kanda Tatsuo1ORCID

Affiliation:

1. Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan

2. Division of Experimental Animal Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan

3. Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan

Abstract

The hepatitis A virus (HAV) infection causes acute hepatitis. HAV also induces acute liver failure or acute-on-chronic liver failure; however, no potent anti-HAV drugs are currently available in clinical situations. For anti-HAV drug screening, more convenient and useful models that mimic HAV replication are needed. In the present study, we established HuhT7-HAV/Luc cells, which are HuhT7 cells stably expressing the HAV HM175-18f genotype IB subgenomic replicon RNA harboring the firefly luciferase gene. This system was made by using a PiggyBac-based gene transfer system that introduces nonviral transposon DNA into mammalian cells. Then, we investigated whether 1134 US Food and Drug Administration (FDA)-approved drugs exhibited in vitro anti-HAV activity. We further demonstrated that treatment with tyrosine kinase inhibitor masitinib significantly reduced both HAV HM175-18f genotype IB replication and HAV HA11-1299 genotype IIIA replication. Masitinib also significantly inhibited HAV HM175 internal ribosomal entry-site (IRES) activity. In conclusion, HuhT7-HAV/Luc cells are adequate for anti-HAV drug screening, and masitinib may be useful for the treatment of severe HAV infection.

Funder

Japan Agency for Medical Research and Development

Platform Project for Supporting Drug Discovery and Life Science Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3