MITA Promotes Macrophage Proinflammatory Polarization and Its circRNA-Related Regulatory Mechanism in Recurrent Miscarriage

Author:

Liu Bowen1,Liu Jun2,Qiu Yang3ORCID,Chen Jiao1,Yang Jing1

Affiliation:

1. Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China

2. Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China

3. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, China

Abstract

MITA (also called STING), a master regulator of DNA-mediated innate immune activation, is a potential therapeutic target for viral infection and virus-related diseases. The circRNA-mediated ceRNA network plays important roles in gene regulation and may contribute to many human diseases. However, the relationship between MITA and recurrent miscarriage (RM) and its circRNA-related regulatory mechanisms remain unclear. In this study, we validated that the decidual M1/M2 ratio was upregulated in RM patients, suggesting the vital roles of decidual macrophages in the pathogenesis of RM. We found that MITA was highly expressed in decidual macrophages of RM patients and validated that MITA could promote apoptosis and macrophage proinflammatory polarization in THP-1-derived macrophage (TDM) cells. Using circRNA sequencing and bioinformatic analysis, we screened out a novel circRNA (circKIAA0391) that is overexpressed in decidual macrophages of RM patients. Mechanistically, we found that circKIAA0391 could promote the apoptosis and proinflammatory polarization of TDM cells by sponging the miR-512-5p/MITA axis. This study provides a theoretical basis for further understanding the impact of MITA on macrophages and its circRNA-related regulatory mechanisms, which may have a crucial immunomodulatory function in the pathophysiology of RM.

Funder

the National Key Research and Development Program of China

National Natural Science Foundation of China

the Natural Science Foundation-General Project of Hubei Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3