Novel 2-alkythio-4-chloro-N-[imino(heteroaryl)methyl]benzenesulfonamide Derivatives: Synthesis, Molecular Structure, Anticancer Activity and Metabolic Stability

Author:

Żołnowska Beata1ORCID,Sławiński Jarosław1ORCID,Belka Mariusz2,Bączek Tomasz2ORCID,Chojnacki Jarosław3ORCID,Kawiak Anna4ORCID

Affiliation:

1. Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland

2. Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland

3. Department of Inorganic Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland

4. Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk, Poland

Abstract

A series of novel 2-alkythio-4-chloro-N-[imino-(heteroaryl)methyl]benzenesulfonamide derivatives, 8–24, were synthesized in the reaction of the N-(benzenesulfonyl)cyanamide potassium salts 1–7 with the appropriate mercaptoheterocycles. All the synthesized compounds were evaluated for their anticancer activity in HeLa, HCT-116 and MCF-7 cell lines. The most promising compounds, 11–13, molecular hybrids containing benzenesulfonamide and imidazole moieties, selectively showed a high cytotoxic effect in HeLa cancer cells (IC50: 6–7 μM) and exhibited about three times less cytotoxicity against the non-tumor cell line HaCaT cells (IC50: 18–20 μM). It was found that the anti-proliferative effects of 11, 12 and 13 were associated with their ability to induce apoptosis in HeLa cells. The compounds increased the early apoptotic population of cells, elevated the percentage of cells in the sub-G1 phase of the cell cycle and induced apoptosis through caspase activation in HeLa cells. For the most active compounds, susceptibility to undergo first-phase oxidation reactions in human liver microsomes was assessed. The results of the in vitro metabolic stability experiments indicated values of the factor t½ for 11–13 in the range of 9.1–20.3 min and suggested the hypothetical oxidation of these compounds to sulfenic and subsequently sulfinic acids as metabolites.

Funder

the Medical University of Gdansk

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3